Dependence of protein crystal stability on residue charge states and ion content of crystal solvent.

نویسندگان

  • Antonija Kuzmanic
  • Bojan Zagrovic
چکیده

Protein crystallization is frequently induced by the addition of various precipitants, which directly affect protein solubility. In addition to organic cosolvents and long-chain polymers, salts belong to the most widely used precipitants in protein crystallography. However, despite such widespread usage, their mode of action at the atomistic level is still largely unknown. Here, we perform extensive molecular dynamics simulations of the villin headpiece crystal unit cell to examine its stability at different concentrations of sodium sulfate. We show that the inclusion of ions in crystal solvent at high concentration can prevent large rearrangements of the asymmetric units and a loss of symmetry of the unit cell without significantly affecting protein dynamics. Of importance, a similar result can be achieved by neutralizing several specific charged residues suggesting that they may play an active role in crystal destabilization due to unfavorable electrostatic interactions. Our results provide a microscopic picture behind salt-induced stabilization of a protein crystal and further suggest that adequate modeling of realistic crystallization conditions may be necessary for successful molecular dynamics simulations of protein crystals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectroscopic Studies on Charge-Transfer Complexation of Iodine with Dibenzo-15-crown-5 and Benzo-12-crown-4 in Chloroform, Dichloromethane and 1,2-Dichloroethane

The formation of charge-transfer complexation between dibenzo-15-crown-5 (DB15C5) and benzo-12-crown-4 (B12C4) (Donor) and iodine is investigated spectrophotometrically in three chlorinated solvents,chloroform, dichloromethane (DCM) and 1,2-dichloroethane (DCE) solution at 25°C. The change in polarityof the solvent also doesn’t affect the stoichiometry of the complexes. Values of formation cons...

متن کامل

Theoretical investigations on molecular structure, NBO, HOMO-LUMO and MEP analysis of two crystal structures of N-(2-benzoyl-phenyl) oxalyl: A DFT study

The N-(2-benzoyl-phenyl) oxalyl derivatives are important models for studying of three-centered intramolecular hydrogen bonding in organic molecules. The quantum theoretical calculations for two crystal structures of N-(2-benzoyl-phenyl) oxalyl (compounds I and II) were performed by Density Functional Theory (B3LYP method and 6-311+G* basis set). From the optimized structures, geometric paramet...

متن کامل

Density Functional Studies on Crystal Structure and electronic properties of Potassium Alanate as a candidate for Hydrogen storage

Potassium Alanate is one of the goal candidates for hydrogen storage during past decades. In this report, initially the Density Functional Theory was applied to simulate the electronic and structural characteristic of the experimentally known KAlH4 complex hydride. The relaxation of unit cell parameters and atomic positions was performed until the total residual force reduced less than 0.001ev ...

متن کامل

Structural insights into the effects of charge-reversal substitutions at the surface of horseradish peroxidase

Horseradish peroxidase (HRP), has gained significant interests in biotechnology, especially in biosensor field and diagnostic test kits. Hence, its solvent-exposed lysine residues 174, 232, and 241 have been frequently modified with the aim of improving its stability and catalytic efficiency. In this computational study, we investigated the effects of Lys-to-Glu substitutions on HRP structure t...

متن کامل

A Pair of Manganese(III) Schiff-Base Enantiomers: Synthesis, Crystal Structure and Magnetic Characterization

Based-on the quasi-planar tetra-dentate Schiff-base ligand, a pair of manganese(III) Schiff-base enantiomers formulated as {[Mn(R,R-3-MeOSalcy)(H2O)(CH3OH)]ClO4}2 (1) and {[Mn(S,S-3-MeOSalcy)(H2O)(CH3OH)]ClO4}2 (2) (3-MeOSalcy = N,N′-(1,2-cyclohexanediylethylene)bis(3-methoxysalicylideneiminato)dianion) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 106 3  شماره 

صفحات  -

تاریخ انتشار 2014